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Synopsis 

A new version of the free-volume theory of diffusion is used to describe polymer-solvent diffusion 
both above and below the glass transition temperature. Expressions are derived for the temperature 
dependence of the mutual diffusion coefficient and for the effective activation energy in the limit 
of zero penetrant concentration. The theory also describes the effect of the glass transition on the 
diffusion process. Predictions of the theory are compared with available diffusivity data for 
amorphous polymer-solvent systems. 

INTRODUCTION 

Numerous studies have been concerned with the temperature dependence 
of the mutual diffusion coefficient for amorphous polymer-penetrant systems 
in the vicinity of the glass transition temperature. Of particular interest is the 
effect of the glass transition on the mutual diffusion coefficient in the limit of 
zero penetrant concentration. An effective activation energy for diffusion, ED, 
can be derived from the mutual diffusion coefficient, D ,  using the expression 

and the variation of ED with temperature can be determined in the temperature 
range where the classical theory of diffusion is valid. A variety of behavior has 
been observed in the experiments which have been reported in the literature, 
and results from a few of these investigations are cited here as examples. 

Meares1p2 measured the diffusion coefficients of six gases in poly(viny1 acetate) 
in temperature intervals approximately 20°C on either side of the glass transition 
temperature. He observed three linear regions on a logarithm of D-versus-1/T 
plot, separated by step changes in ED, near the glass temperature and at about 
10°C below the glass temperature. Kishimoto et al.3 examined the diffusion 
of water in poly(viny1 acetate) in the temperature interval of 5"-6OoC. The plot 
of the logarithm of D versus 1/T was curved, and ED reached a maximum value 
in the vicinity of the glass transition temperature. Zhurkov and Ryskin4 and 
Ryskin5 obtained diffusion coefficients for a number of polymer-solvent systems, 
and in all cases considered a step change in ED was observed near the glass 
temperature. Stannett and Williams6 obtained diffusivity data for eight gases 
in poly(ethy1 methacrylate) and observed constant activation energy and no 
discernible effect of the glass transition on the diffusion process. They observed 
a step change in ED with water as a penetrant, but attributed this to be the 
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plasticizing effect of the water molecule above the glass temperature. Ziegel 
and Eirich7 used the same polymer as Stannett and Williams, but they observed 
that the glass transition caused a step change in ED when hydrogen and deute- 
rium were used as penetrants. Burgess et a1.8 measured diffusion coefficients 
for four gases in poly(methy1 acrylate) and observed a step change in ED near 
the glass temperature for each of the gases. Kumins and Roteman: Tikhomirov 
et al.,l0 and Michaels et a1.l1 also conducted comprehensive investigations of the 
effect of the glass transition on the diffusion process, but these studies are not 
considered here because of the possible complicating effects of the crystalline 
regions in the polymers which were utilized. 

It would prove valuable if this diverse behavior could be explained theoreti- 
cally. Hopfenberg and Stannett12 have discussed mechanisms for diffusion in 
glassy polymers and for the effect of the glass transition on the diffusion process. 
The purpose of this paper is to provide an alternative description of the diffusion 
process near the glass transition by using a new version of the free volume theory 
of d i f f ~ s i o n . l ~ - ~ ~  Expressions are derived for the temperature dependencies 
of D and ED, and the predictions of the theory are then compared with available 
diffusivity data for amorphous polymer-solvent systems. 

Unfortunately, comparison of experimental results with any theory must be 
viewed with caution because there exist several sources of uncertainty in the 
reported diffusivity data. In the first place, very accurate diffusion data are 
needed to determine the temperature dependence of ED using eq. (1). A t  the 
present, it appears that an insufficient amount of such data is available for ad- 
equate testing of any proposed theory. Furthermore, in some experimental 
investigations, additional uncertainty is introduced by the need to extrapolate 
diffusivity data near the glass transition temperature to zero penetrant con- 
centration. Finally, some reported diffusion coefficients may be in doubt because 
of possible anomalous diffusion effects near the glass temperature. 

Conditions under which anomalous diffusion effects can be expected for 
amorphous polymer-solvent systems can be anticipated by using the concept 
of a diffusion Deborah numberl7 and by constructing Deborah number di- 
agrams.'8 For small Deborah numbers, the molecular relaxation process is fast 
compared to the diffusive transport, and the diffusion process can hence be de- 
scribed by the classical theory of diffusion. Since this transport involves a purely 
viscous binary mixture, it can be called viscous diffusion. For large Deborah 
numbers, there is effectively no time variation of the polymer structure during 
the diffusion process. A diffusing solvent molecule undergoes movement in a 
material which appears to have the properties of an elastic solid, and this type 
of diffusional transport can be called elastic diffusion. Meares,lY2 Kishimoto 
et al.,3 and Zhurkov and Ryskin4 collected diffusion data using small amounts 
of penetrants below the glass temperature, and they concluded that the dif- 
fusional transport could be described by the equations of the classical theory with 
a concentration independent D. Since the Deborah numbers for these experi- 
ments were presumably large, it is reasonable to conclude tentatively that dif- 
fusional transport for large Deborah numbers can be satisfactorily described by 
the classical theory even though the system is obviously not a purely viscous fluid 
mixture. Finally, for Deborah numbers of the order of 1, the molecular relaxation 
and diffusive transport processes occur in comparable time scales. The relative 
movement of polymer and solvent can thus be affected by the rearrangement 
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of polymer chains, and the diffusional transport can be denoted as viscoelastic 
diffusion. There is no experimental or theoretical justification for using the 
classical theory to describe this diffusion process. Clearly, meaningful diffusion 
coefficients can generally be obtained only if experiments are conducted so that 
viscoelastic diffusion is avoided. 

The existence of viscoelastic effects in unsteady sorption or permeation ex- 
periments a t  temperatures near the glass transition can also be determined by 
conducting appropriate auxiliary experiments. For example, diffusion coeffi- 
cients determined from sorption experiments can be compared with those ob- 
tained using steady-state permeation  experiment^.^ Alternatively, viscoelastic 
effects in sorption experiments can be detected by carrying out a sequence of 
such experiments using different sample thickne~ses.~ Unfortunately, very few 
investigators have adequately scrutinized unsteady sorption or permeation data 
for the possibility of viscoelastic effects. Since diffusivities near the transition 
temperature which are measured using unsteady experiments must be viewed 
with caution, so must the comparisons of data and theory which are presented 
below. However, these comparisons are useful since they at least show that the 
predictions of the proposed theory are plausible. 

THEORY 

Local density fluctuations occur both above and below the glass transition 
temperature, and i t  is reasonable to expect that free volume theory should pro- 
vide an adequate description of transport in glassy materials. For example, 
Plazek and Magilllg and RUschZ0 applied free volume analyses with some success 
in describing creep and stress relaxation experiments performed on glassy 
polymers. There will, of course, be several important differences between 
transport processes above and below Tg2, the conventional glass transition 
temperature of the pure polymer. In the first place, polymers above Tg2 possess 
an equilibrium liquid structure before a mass transfer or mechanical experiment 
is initiated, whereas materials below Tg2 generally have a nonequilibrium liquid 
configuration. Furthermore, the thermal expansion coefficient changes rapidly 
near Tg2 (usually approximated by a step function), reflecting the increasing 
difficulty for volume contraction with decreasing temperature. 

In addition, the hole free volume, the portion of the unoccupied volume in the 
polymer which can be redistributed with no energy change, becomes very small 
below Tg2. Hence, the probability that a local fluctuation in density will produce 
a hole of sufficient size so that a polymeric jumping unit or a solvent molecule 
will move decreases rapidly near Tg2. Motion below Tg2 becomes so hindered 
owing to the lack of hole free volume that significant movement of segments of 
polymer molecules does not occur in the time scales of rheological or diffusion 
experiments. It is thus reasonable to expect that the average hole free volume 
of the system does not change during the course of such experiments. The 
proposed model of the free-volume behavior of the system is depicted in Figure 
1. The specific occupied volume of a material is defined to be the specific volume 
of the equilibrium liquid at O O K ,  and the interstitial free volume is the part of 
the free volume which is distributed uniformly among the jumping units of a 
given species because the energy for redistribution is large. From this figure 
it is evident that transport below Tg2 can be significantly enhanced by the extra 
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Fig. 1. Volume-temperature behavior of an amorphous polymer: (a) volume of equilibrium liquid; 
(b) volume of nonequilibrium liquid or glass; (c) sum of occupied volume and interstitial free volume; 
(d) occupied volume. 

hole free volume which is effectively frozen into the polymer in the nonequilib- 
rium liquid or glassy state. 

We consider the temperature dependence of D for a system consisting of a trace 
of solvent and an amorphous polymer. The proposed theory is valid for systems 
that initially have an equilibrium liquid structure above the glass temperature 
and a nonequilibrium liquid structure, which remains invariant during the dif- 
fusion process, below the glass temperature. Thus, the theory describes the 
temperature dependence of D for elastic or viscous diffusion above Tg2 and for 
elastic diffusion below Tg2. The volumetric behavior of the equilibrium liquid 
above Tg2 is described by a thermal expansion coefficient a2, and the temperature 
dependence of the volume of the nonequilibrium liquid below Tg2 is given by a 
pseudoexpansion coefficient for the glassy state, a%. The rapid change in the 
expansion coefficient in the vicinity of Tg2 is idealized2' as a step change from 
azg to a 2  at  Tg2. The expansion coefficient ' ~ 2 ~  must be defined as the temper- 
ature derivative of volume with both pressure and some measure of the internal 
order of the nonequilibrium liquid being held constant.21 Over the moderate 
temperature ranges usually considered in diffusion studies, it is reasonable to 
assume that these expansion coefficients can be adequately approximated by 
suitable average values. 

From a new version of the free-volume theory for self-diffusion coefficients,l3 
it can be shown that in the limit of zero penetrant concentration, both D and D1, 
the self-diffusion coefficient of the solvent, are given by the following expression 
for a classical diffusion process: 

D = D' = D~~ exp( - -) r4Q; 
QFH2 

where y is an overlap factor (which should be between '/2 and 1) which is intro- 
duced because the same free volume is available to more than one molecule; v; 
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is the minimum or critical local hole free volume per gram of polymer required 
for displacement of a polymeric jumping unit; .$ is the ratio of the critical molar 
volume of the solvent to the critical molar volume of the polymeric jumping unit; 
and V F H ~  is the average hole free volume per gram of polymer which characterizes 
an equilibrium liquid structure. The preexponential factor Do1 is considered 
to be a much weaker function of temperature than the exponential term and, 
hence, is treated as a constant. 

From eq. (2) and from free-volume considerations discussed elsewhere,15 it 
can easily be shown16 that the mutual diffusion coefficients at  T and Tg2 are 
related by the following expression valid for T > T,2: 

where is the specific volume of the polymer and acz is the thermal expansion 
coefficient of pure polymer for the sum of the specific occupied volume and the 
specific interstitial free volume. It is assumed that ac2 is constant and is not 
affected by the glass transition. The parameter K22 depends on the properties 
of the polymer only, whereas the group rv;[/K12 is a function of both polymer 
and solvent properties. 

The nonequilibrium liquid structure is considered invariant below Tg2 during 
the course of a diffusion process. Since the average hole free volume is fixed, 
it is reasonable to assume that the self-diffusion coefficient below Tg2 (and hence 
also D) can be determined using eq. (2), where V F H ~  now refers to the specific 
average hole free volume for the glassy polymer. By considerations completely 
analogous to those described above, it can be shown that the temperature de- 
pendence of D below Tg2 is given by the expression 

with 

The parameter X describes the character of the change of the volume contraction 
which can be attributed to the glass transition. Clearly, an infinite number of 
nonequilibrium liquid structures can be realized below Tg2 depending on the 
mechanical and thermal history of the material. If X = 1, the equilibrium liquid 
structure is realized at  all temperatures; whereas, if X = 0, the specific hole free 
volume equals VFH,( Tgz)  everywhere below Tg2. It is evident from eqs. (3) and 
(7) that plots of the logarithm of D versus 1/T will not be linear, either above or 
below Tg2, if X > 0. 
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The temperature dependence of ED can be derived from eqs. (1) and (2). 
Above Tg2, the free volume result for ED is simply 

Y v ; t  RT2 - 
Kl2 

(9) 

and the temperature variation of ED below Tg2 is given by the following ex- 
pression: 

ED = 
(KZZ + T - Tgd2 

Consequently, the step change for ED at Tg2 is given by the result 

Furthermore, it is evident that 

A more useful form of eq. (11) is the expression 

where it has been assumed that the specific critical volume is equal to the specific 
occupied volume both for the solvent and for the polymeric jumping unit. In 
eq. (13), c(0) is the molar volume of the liquid solvent at  O O K ,  G(0) is the 
specific volume of the liquid polymer at  O O K ,  Mj is the molecular weight of a 
jumping unit of the polymer chain, and ( C f ) ,  and ( C 9 2  are the WLF constants 
for the polymer.22 For a given polymer, the magnitude of the step change in ED 
depends on the solvent size, the glass temperature and free volume characteristics 
of the polymer, and the change in the expansion coefficient a t  the transition 
temperature. Stannett and Williams6 have previously noted that penetrant size 
and the relative change in the expansion coefficient at Tg2 should be of impor- 
tance in determining the effect of the glass transition on the diffusion pro- 
cess. 

The parameters Tgz, ( C g ) ,  (Cg)2, "2, and a2g have been tabulated for a number 
of amorphous polymer~,2~,~3 and p(0) and E(0) can be estimated using methods 
discussed by H a ~ a r d . ~ ~  Furthermore, [ and hence Mj can be calculated by using 
viscosity data for the polymer and mutual diffusion data for a system consisting 
of a trace of solvent in the p01ymer.l~ However, a,2 and f f i 2  cannot in general 
be extracted from polymer viscosity data above Tg2, and eqs. (12) and (13) cannot 
be utilized in a strictly predictive sense. However, it is evident that 

O S X j 9  (14) 
"2 

and this result can be used in eqs. (12) and (13) to provide bounds for 
ED ( T y z ) / E ~  (Ti2)  and ED ( T:2) - ED ( Ti2)  for fixed azg and "2. Furthermore, 
the bracketed quantity in eq. (13) depends only on properties of the polymer, 
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and thus the step change in ED should be a linear function of the solvent size, 
as estimated using the solvent molar volume at 0°K. This prediction of the 
theory is tested below using diffusivity data collected for several solvents on the 
same polymer. Finally, from eq. (12) ,  it is evident that the theory predicts that 
the ratio of activation energies at  Tg2 should be independent of the solvent for 
a given polymer. Comparison of this prediction with experiment is also con- 
sidered below. 

The above development immediately suggests a method for separating the 
free-volume parameters of a polymer, a , ~ ,  fg2,  and y. It can easily be shown 
that 

and the above three free-volume parameters can be determined from these 
equations using viscosity data above Tg2 in conjunction with mutual diffusion 
coefficient data measured above and below Tg2 in the limit of zero penetrant 
concentration. Berry and Fox23 have proposed a method for separating the 
free-volume parameters using rheological data. 

RESULTS AND DISCUSSION 

The predictions of the free-volume theory can be tested using data for amor- 
phous polymer-solvent systems taken from the investigations briefly described 
above.3-8 The data of Meare& are not included in any comparisons; it is not 
clear how these results should be interpreted since the two linear regions below 
the glass temperature may possibly be evidence of anomalous diffusion behavior 
or of a changing activation energy for diffusion. Furthermore, the behavior 
reported by Meares has apparently not been observed by other investigators, 
and it seems reasonable to exclude these data from present consideration. 

With the exception of the data presented by Kishimoto et al.3 and a few results 
of R y ~ k i n , ~  constant activation energies have been observedk8 both above and 
below Tg2. However, as noted above, eqs. (3) and (7) indicate that plots of the 
logarithm of D versus 1/T will not be linear either above or below the glass 
transition temperature. It is easy to show that the data and theory are not 
necessarily in disagreement by examining curves depicting the temperature 
dependence of D near Tg2. A plot of this type is presented in Figure 2 for pen- 
etrants diffusing in polystyrene with Tg2 = 373°K and K22 = 45.3"K.15J6 Avalue 
of 200'K for yvzt/K12 is typical of a small penetrant like nitrogen, whereas 
rQztIK12 = 1000°K represents an organic solvent such as ethylbenzene. 

It is evident from Figure 2 that the variation of D below Tg2 is strongly de- 
pendent on A. Furthermore, it is clear that a straight line representation for the 
logarithm of D versus 1/T is satisfactory for sufficiently small temperature in- 
tervals and for small solvents. Indeed, from Figure 2 it would appear that very 
accurate data are needed if the temperature dependence of ED is to be deter- 
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Fig. 2. Temperature dependence of D for polystyrene-penetrant systems with K22 = 45.3OK. 

mined for solvents with 7v;.$/K12 = 2W°K for temperature intervals as high as 
8OoC above Tg2. Furthermore, it can be seen from this figure that nonlinearities 
in the logarithm of D-versus-1/T plots become easier to detect as the size of the 
solvent increases. These points are considered in greater detail elsewhere.16 The 
variation of ED with temperature is similarly difficult to determine below Tg2 
for small solvents and small temperature intervals, especially if X is less than 
about 0.6. 

Since nonlinear behavior is difficult to detect for the diffusion of small solvents 
over relatively narrow temperature intervals, it is not surprising that constant 
activation energies have been reported for the majority of the studies listed above. 
The experiments of Stannett and Williams? Ziegel and E i r i ~ h , ~  and Burgess et 
a1.8 were conducted using small penetrants and temperature intervals above or 
below Tg2 which were generally about 3OoC, with a maximum interval of ap- 
proximately 55OC. Zhurkov and Ryskin4 and Ryskin5 used bigger penetrants 
with temperature intervals which were generally 50-60°C with a maximum in- 
terval of approximately 110OC. For this large interval, a significant variation 
of ED with temperature was reported. Kishimoto et al.3 also observed a signif- 
icant temperature dependence of ED using temperature intervals of about 25°C- 
below Tg2 and 3OoC above the transition temperature. The determination of 
the temperature variation of ED was accomplished by collecting data at smaller 
temperature increments than were generally used in the above investigations. 
It thus seems fair to conclude that the available data for the temperature de- 
pendence of D are not inconsistent with the predictions of the free volume theory. 
It is reasonable, therefore, to interpret a reported constant activation energy for 
a given temperature interval as a good estimate of ED for the average temperature 
of that interval. 
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Kishimoto et  al.3 reported a maximum in ED in the vicinity of the glass tran- 
sition temperature. If X < 1, it follows that comparable behavior is predicted 
by the free-volume theory, as is evident from Figure 3. This figure describes 
the variation of ED with temperature for polystyrene and a small penetrant 
(7V;[/K12 = 200°K) for five values of A. The theory predicts that a local max- 
imum value of ED is achieved at  Tg2 if X < 1, followed by a step decrease in ED 
and a subsequent increase if X > 0. These free-volume predictions differ qual- 
itatively in two aspects from the results observed by Kishimoto et al.3 First, the 
ED data of these investigators show a smooth curve for ED and a gradual decrease 
of ED below Tg2, as contrasted with the step discontinuity depicted in Figure 
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Fig. 3. Temperature dependence for polystyrene-penetrant system with -yv;E/K,2 = 200°K and 
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3. This difference is presumably a consequence of the utilization of a step 
function as an idealization of the change in the thermal expansion coefficient 
near TgZ. A second difference is that Kishimoto et al.3 observed no increase in 
ED below Tg2. There appears to be no explanation for this apparent discrepancy 
at  this time. 

Zhurkov and Ryskin4 and Ryskin5 collected data using six polymers and a 
variety of solvents, and it is of interest to use this data set to check the predictions 
of eqs. (12) and (13). The activation energies reported by these investigators 
are taken to be representative of the activation energies at  the average temper- 
atures T1 and Tz, above and below the glass temperature, respectively. Since 
some of the reported glass transition temperatures differ significantly from the 
usual values, the properties of the polymers which are utilized are somewhat 
uncertain. Furthermore, the temperature intervals studied are not particularly 
wide, and polymer properties are not derived directly from the diffusion data.15 
Consequently, eqs. (12) and (13) are not utilized directly, and, with the exception 
of one calculation described below, the polymer properties are not utilized here 
in the comparison of data and theory. 

An equation similar in form to eq. (13) can be derived for ED(T~) - ED(T~). 
For diffusivity data obtained for a series of solvents and a single polymer, it 
follows from this result that ED ( Tl) - ED (T2) is a linear function of the molar 
volume of the solvent at  OOK if T1 and T2 are the same for all solvents. This is 
approximately true for the polystyrene data reported by Zhurkov and Ryskin4 
for four solvents and for the poly(viny1 acetate) data for two solvents. Values 
of ED ( T1) - ED ( T2) are plotted versus molar volume of the solvent at  0°K in 
Figure 4. The values of QY(0) were estimated using the methods of SugdenZ5 
and BiltzZ6 as summarized by H a ~ a r d . ~ ~  The theoretical prediction is a straight 

SOLVENT MOLAR VOLUME AT O'K (cm3/g  mole) 
Fig. 4. Dependence of activation energy difference on solvent size. 
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TABLE I 
Dependence of ED(T~)/ED(T~) on Solvent 

Average value of Maximum difference 
Polymer Number of solvents E D ( T ~ ) / E D ( T ~ )  from average, % 

Polystyrene 4 0.48 15 
Poly(viny1 acetate) 2 0.42 11 

line through the origin, and the data are in reasonable agreement with this 
result. 

Since eq. (12) cannot be checked directly using the data of Zhurkov and 
Ryskin4 and Ryskin',5 we consider the following ratio of activation energies: 

(18) -- ED(Tz)  hT%zz + Ti - Tgd2 
.ED(TI) - T W z z  + ~ ( T z  - 7'g2)l2 

Again, if diffusivity data are measured for a single polymer and a series of sol- 
vents, then the above ratio of activation energies is independent of the solvent 
if T1 and T2 are the same for all solvents. This prediction is checked using the 
polystyrene and poly(viny1 acetate) data, and it is evident from Table I that 
reasonable agreement of the data with the theoretical prediction is obtained. 
Furthermore, it can easily be shown that 

Comparison of the ratios of activation energies listed in Table I with the maxi- 
mum values of h computed from eq. (14) and listed in Table I1 shows that the 
inequality of eq. (19) is satisfied. 

TABLE I1 
Calculated Values of X for Amorphous Polymer-Solvent Systems 

Polymer Calculated X Upper bound for X Reference 

Polystyrene 
methanol 0.24 0.30 4 
ethanol 0.22 0.30 
methylene chloride 0.20 0.30 
ethyl bromide 0.22 0.30 

water 0.20 0.37 4 
methanol 0.16 0.37 

methanol 0.33 0.41 4 
ethanol 0.38 0.41 

water 0.44 0.50 5 
methanol 0.34 0.50 
hydrogen 0.44 0.61 7 

methanol 0.47 0.62 5 

water 0.24 0.39 5 
neon 0.39 0.39 8 
argon 0.35 0.39 
krypton 0.35 0.39 

Poly(viny1 acetate) 

Poly(methy1 methacrylate) 

Poly(ethy1 methacrylate) 

Poly(buty1 methacrylate) 

Poly(methy1 acrylate) 
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The theory predicts that activation energies above and below the glass tran- 
sition temperature are related by eq. (18). Since ED(T~)/ED(T~), TI, T2, and 
Tg2 are reported in some of the above diffusion studies and since K22 can be es- 
timated using data summarized by Ferry,22 eq. (18) provides a convenient means 
of determining A. The calculated value of X must obviously be independent of 
the solvent utilized for a particular polymer, and, furthermore, X must lie within 
the bounds given by eq. (14) if the theory is to have a valid basis. Calculated 
values of X based on the data of Zhurkov and Ryskin? Ryskin? Ziegel and Eirich: 
and Burgess et are summarized in Table 11. An estimate of the upper bound 
on X was determined using data for a2 and azg tabulated by Ferry22 and by Berry 
and The expansion coefficients reported by Burgess et al.8 were not used 
because they do not appear to be consistent with the volume-temperature curve 
presented in their paper. Also, the helium data of these investigators are not 
included because of the large scatter in the reported diffusion coefficients. Fi- 
nally, the tabulated activation energies for the poly(methy1 methacrylate)-water 
data of Zhurkov and Ryskin4 are not consistent with the reported plot, and this 
system is not included in Table 11. 

It is evident from Table I1 that all of the calculated values of X fall within the 
bounds given by eq. (14). Furthermore, with the exception of the poly(methy1 
acrylate) data, the variation of X with solvent for a given polymer is relatively 
small, the maximum difference from the average being typically approximately 
10%. The maximum deviation from the average is nearly 30% for the poly- 
(methyl acrylate) data. This is not surprising since the above calculation is based 
on the assumption that the polymer samples utilized in the two investigations 
have identical properties. It is quite possible that this is not the case, and some 
variation in the calculated values of X is not unexpected. Indeed, there is very 
good agreement among the values of X calculated for three solvents using only 
the data of Burgess et a1.8 

Finally, we consider the poly(ethy1 methacrylate) data presented by Stannett 
and Williams6 and by Ziegel and E i r i ~ h . ~  These data were apparently all mea- 
sured using equivalent polymer samples with an upper bound for X equal to 0.61. 
The theory thus predicts that there will be a step change in ED as the glass 
transition is traversed. Stannett and Williams reported constant activation 
energies for eight gases in a temperature interval which included Tg2, whereas 
Ziegel and Eirich observed step changes in ED for two penetrants. Zhurkov and 
Ryskin4 and Ryskin5 also reported step changes in ED for poly(ethy1 methac- 
ry1ate)-penetrant systems. These investigations give results which do not appear 
to be consistent, but it can be shown that the data of Stannett and Williams are 
not necessarily in disagreement with the predictions of the free-volume theory. 
With the aid of the data reported by Meares2 and by Stannett and Williams, 
curves depicting the temperature dependence of D can be constructed for the 
poly(viny1 acetate)-krypton and poly(ethy1 methacrylate)-krypton systems. 
These curves are presented in Figures 5 and 6; the maximum value of X was used 
in each case to construct the curve below Tg2. 

It is evident from Figure 5 that a straight line will provide a good representation 
of the poly(ethy1 methacrylate)-krypton data even though there is a step change 
in ED at Tg2. Clearly, very accurate data are needed to detect this step change, 
and it is reasonable that Stannett and Williams concluded that the activation 
energy for diffusion was constant over the entire temperature range. On the 
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Fig. 5. Temperature dependence of D for poly(ethy1 methacrylate)-krypton system. 

other hand, it is quite clear from Figure 6 that there is a jump discontinuity at  
Tg2 for the poly(viny1 acetate)-krypton system. This step change is much easier 
to detect than the previous one, and it would be expected that reasonably accu- 
rate data would shpw this phenomenon. Indeed, the diffusivity data of Meares 
and the poly(viny1 acetate) permeability data of Stannett and Williams both 
clearly indicate an effect of the glass transition on the mass transfer process. 

It is fair to conclude from the above comparisons of data and theory that a 
free-volume description of the diffusion process around Tg2 is a plausible alter- 
native to previously proposed explanations. Both qualitative and quantitative 
agreement of theory and experiment were observed, and this suggests that con- 
sideration should be given to free-volume theory in the analysis of new diffusion 
data. A free-volume analysis of diffusion data would be considerably facilitated 
if viscosity and thermal data for the polymer were also obtained. 
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